New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM.

نویسندگان

  • Xuefeng Wang
  • Minghao Zhang
  • Judith Alvarado
  • Shen Wang
  • Mahsa Sina
  • Bingyu Lu
  • James Bouwer
  • Wu Xu
  • Jie Xiao
  • Ji-Guang Zhang
  • Jun Liu
  • Ying Shirley Meng
چکیده

Lithium metal has been considered the "holy grail" anode material for rechargeable batteries despite the fact that its dendritic growth and low Coulombic efficiency (CE) have crippled its practical use for decades. Its high chemical reactivity and low stability make it difficult to explore the intrinsic chemical and physical properties of the electrochemically deposited lithium (EDLi) and its accompanying solid electrolyte interphase (SEI). To prevent the dendritic growth and enhance the electrochemical reversibility, it is crucial to understand the nano- and mesostructures of EDLi. However, Li metal is very sensitive to beam damage and has low contrast for commonly used characterization techniques such as electron microscopy. Inspired by biological imaging techniques, this work demonstrates the power of cryogenic (cryo)-electron microscopy to reveal the detailed structure of EDLi and the SEI composition at the nanoscale while minimizing beam damage during imaging. Surprisingly, the results show that the nucleation-dominated EDLi (5 min at 0.5 mA cm-2) is amorphous, while there is some crystalline LiF present in the SEI. The EDLi grown from various electrolytes with different additives exhibits distinctive surface properties. Consequently, these results highlight the importance of the SEI and its relationship with the CE. Our findings not only illustrate the capabilities of cryogenic microscopy for beam (thermal)-sensitive materials but also yield crucial structural information on the EDLi evolution with and without electrolyte additives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Solid Electrolyte Interphases on Lithium Metal Anode

Lithium metal batteries (LMBs) are among the most promising candidates of high-energy-density devices for advanced energy storage. However, the growth of dendrites greatly hinders the practical applications of LMBs in portable electronics and electric vehicles. Constructing stable and efficient solid electrolyte interphase (SEI) is among the most effective strategies to inhibit the dendrite gro...

متن کامل

Lithium batteries: Improving solid-electrolyte interphases via underpotential solvent electropolymerization

Understanding the mechanism of formation of solid-electrolyte interphases (SEI) is key to the prospects of lithium metal batteries (LMB). Here, we investigate via cyclic voltammetry, impedance spectroscopy and chronoamperometry the role of kinetics in controlling the properties of the SEI generated from the reduction of propylene carbonate (PC, a typical solvent in LMB). Our observations are co...

متن کامل

Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-...

متن کامل

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations.

First-principles calculations were performed to investigate the electrochemical stability of lithium solid electrolyte materials in all-solid-state Li-ion batteries. The common solid electrolytes were found to have a limited electrochemical window. Our results suggest that the outstanding stability of the solid electrolyte materials is not thermodynamically intrinsic but is originated from kine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 17 12  شماره 

صفحات  -

تاریخ انتشار 2017